Evaluate each expression if \(w = 2, x = 3, y = 5, \) and \(z = 6. \)

1. \(y + 5 \)
2. \(9 - z \)
3. \(x + w \)
4. \(6y - 5 \)
5. \(\frac{z}{2} \)

Evaluate each expression if \(m = 3, n = 7, \) and \(p = 9. \)

6. \(m + n \)
7. \(12 - 3m \)
8. \(20 + 2n \)
9. \(n^2 \)
10. \(6m^2 \)
11. \(\frac{p^2}{3} \)
12. \(3m - n \)
13. \(\frac{m^2}{9} \)
14. \(\frac{2.5m + 2.5}{5} \)
15. \(\frac{(n + 2)^2}{3} \)

Describe the relationship between the terms in each arithmetic sequence. Then write the next three terms in each sequence.

16. 0, 5, 10, 15, …
17. 18, 27, 36, 45, …

18. 7, 19, 31, 43, …
19. 0.4, 0.8, 1.2, 1.6, …

20. 17, 31, 45, 59, …

21. Find the 40th term in the arithmetic sequence: 13, 26, 39, 52, …
22. A free falling object increases speed by a little over 22 miles per hour each second. The arithmetic sequence 22, 44, 66, …, represents the speed after each second, in miles per hour, of a dropped object. How fast is a rock falling after 8 seconds if it is dropped over the side of a cliff?

Name the property shown by each statement.

23. \(9 \cdot 6 = 6 \cdot 9\)
24. \(m + 0 = m\)

25. \(14 \cdot 1 = 14\)
26. \(2 + (8 + 3) = (2 + 8) + 3\)

27. **State whether the following conjecture is true or false. If false, provide a counterexample.**
Subtraction of whole numbers is always commutative.

28. The first four snowfalls of the year in Shawnee’s hometown measured 1.6 inches, 2.2 inches, 1.8 inches, and 1.4 inches. Use mental math to find the total amount of snow that fell. Explain your reasoning.

Use the Distributive Property to rewrite each expression.

29. \(6(t + 2)\)
30. \(-5(4 + x)\)

31. \(-7(8n - m)\)
32. \((4c + 2d)(-2)\)

33. \((2 + g) 8\)
34. \(6x (y - z)\)

35. \(-3 (2b - 2a)\)