Worksheet Altitude, Median, Angle bisector, perpendicular Bisector

Name the special segment for 1-4

1) \(\overline{AC} \) median
2) \(\overline{HE} \) perpendicular bisector
3) \(\overline{IL} \) angle bisector
4) \(\overline{MN} \) altitude

5) Draw a triangle with an altitude outside the triangle.

6) In \(\triangle ABC \), \(\overline{DE} \) is perpendicular bisector of \(\overline{AC} \) with D on \(\overline{AC} \). If \(AD = 2y + 4 \), \(CD = y + 12 \), and \(\angle EDC = 5(x - 12)^\circ \). Find the value of x and y. Find length of \(AD \), \(DC \), and \(AC \).

\[2y + 4 = y + 12 \]
\[5(x - 12) = 90 \]
\[3x - 60 = 90 \]
\[5x = 150 \]
\[x = 30 \]

\[AD = 2(8) + 4 = 20 \]
\[DC = 8 + 12 = 20 \]
\[AC = 40 \]

7) \(\overline{DB} \) is an altitude of \(\triangle ADC \), and \(\angle DBC = (n^2 + 81)^\circ \). Find the value of n.

\[n^2 + 81 = 90 \]
\[n^2 = 9 \]
\[n = 3 \]

8) \(\overline{DB} \) and \(\overline{AE} \) are medians. If \(BE = 6x + 10 \), \(\overline{AC} = 3x + 3 \), \(CE = 6x + 12 \), \(BD = 2x + 60 \), then find the value of x and y and the length of the segments.

skip #8

9) \(\overline{YB} \) is an altitude of \(\triangle XYZ \), and \(\angle YBZ = (6x - 6)^\circ \). Find the value of x. What is the measure of \(\angle YBZ \)?

\[6x - 6 = 90 \]
\[6x = 96 \]
\[x = 16 \]

10) In \(\triangle DEG \), \(\overline{FH} \) is a perpendicular bisector of \(\overline{DG} \) with H on \(\overline{DG} \). If \(DH = 2y + 3 \), \(GH = 7y - 42 \), and \(\angle FHG = (x^2 + 9)^\circ \), then find the value of x and y. What is the measure of \(\angle DG \)?

\[2y + 3 = 7y - 42 \]
\[45 = 5x \]
\[9 = y \]

\[x^2 = 81 \]
\[x = 9 \]

\[DH = 2(4) + 3 = 21 \]

\[DG = 2(9) = 18 \]
11) \(\overline{RS} \) is an altitude of \(\triangle RTE \), \(m \angle SRT = (4x - 8)° \), and \(m \angle STR = (6x + 13)° \). Find the value of \(x \).

\[
90 + 4x - 8 + 6x + 13 = 180
\]

\[
10x + 5 = 90
\]

\[
10x = 85
\]

\[
x = 8.5
\]

12) In \(\triangle RTE \), \(\overline{TA} \) bisects \(\angle RTE \), \(m \angle RTA = (3y - 4)° \), and \(m \angle ETA = (4y - 17)^° \). Find the measure of \(\angle RTE \).

\[
m \angle LRTA = 3(13) - 4 = 35°
\]

\[
m \angle RTE = 2(35) = 70°
\]

13) \(\overline{TA} \) is a median of \(\triangle RTE \), \(AE = 3x - 11 \), and \(AR = x + 5 \). Find \(AE, AR, \) and \(ER \).

\[
3x - 11 = x + 5
\]

\[
2x = 16
\]

\[
x = 8
\]

\[
AE = 3(8) - 11 = 13
\]

\[
AR = 13
\]

\[
ER = 0.5(13) = 6.5
\]

14) \(\overline{EY} \) is a median of \(\triangle RET \), \(RY = 2z - 1 \), and \(7Y = 4z - 11 \). Find \(\overline{RT} \).

\[
2z - 1 = 4z - 11
\]

\[
10 = 2z
\]

\[
x = 5
\]

\[
RT = 2(2(5) = 10
\]

15) Find \(x \) and the measure of \(\angle PSR \), if \(\overline{PS} \) is a median.

\[
10x + 7 = 5x + 3
\]

\[
x = 10
\]

\[
PS = 2
\]

\[
m \angle PSR = 15(2) + 42
\]

16) Find \(x, CD, \) and \(DB \), if \(\overline{AD} \) is an altitude of \(\triangle ABC \).

\[
4x - 6 = 90
\]

\[
x = 24
\]

\[
4x = 96
\]

\[
CD = (2a) + 7 = 31
\]

\[
PB = 2(24) - 15 = 33
\]

17) \(\triangle WHA \), if \(\overline{WP} \) is a median and an angle bisector, \(AP = 3y + 11 \), \(PH = 7y - 5 \), \(m \angle HWP = x + 12 \), \(m \angle PAW = 3x - 2 \), and \(m \angle HWA = 4x - 16 \), find \(x \) and \(y \). Is \(\overline{WP} \) also an altitude, explain?

\[
7y - 5 = 3y + 11
\]

\[
y = 16
\]

\[
x = 4
\]

\[
2(x + 13) = 4x - 16
\]

\[
x = 2
\]

\[
40 = 2x
\]

\[
x = 20
\]

\[
\angle WPA = 3(20) + 12 = 84°
\]

\[
m \angle WPA = 180 - 72 - 58 = 46°
\]

\[
\text{YES}
\]