Worksheet Altitude, Median, Angle bisector, perpendicular Bisector

Name ______________________

Name the special segment for 1-4

1) \overline{AC}

2) \overline{HE}

3) \overline{JL}

4) \overline{PN}

5) Draw a triangle with an altitude outside the triangle.

6) In $\triangle ABC$, \overline{DE} is perpendicular bisector of \overline{AC} with D on \overline{AC}. If $AD = 2y + 4$, $CD = y + 12$, and $m\angle EDC = 5(x - 12)^\circ$. Find the value of x and y. Find length of AD, DC, AC.

7) \overline{DB} is an altitude of $\triangle ADC$, and $m\angle DBC = (n^2 + 81)^\circ$. Find the value of n.

8) \overline{DB} and \overline{AE} are medians. If $BC = 6y + 10$, $AB = y^2 + 3y$, $CE = 6x + 12$, $ED = 2x + 60$, then find the value of x and y, and the length of the segments.

9) \overline{YB} is an altitude of $\triangle XYZ$, and $m\angle YBZ = (6x - 6)^\circ$. Find the value of x. What is the measure of $\angle YBZ$?

10) In $\triangle DEG$, \overline{FH} is a perpendicular bisector of \overline{DG} with H on \overline{DG}. If $DH = 2y + 3$, $GH = 7y - 42$, and $m\angle FHG = (x^2 + 9)^\circ$, then find the value of x and y. What is the measure of \overline{DG}?
11) \(\overline{RS} \) is an altitude of \(\triangle RTE \), \(m\angle SRT = (4x - 8)\degree \), and \(m\angle STR = (6x + 13)\degree \). Find the value of \(x \).

12) In \(\triangle RTE \), \(\overline{TA} \) bisects \(\angle RTE \), \(m\angle RTA = (3y - 4)\degree \), and \(m\angle ETA = (4y - 17)\degree \). Find the measure of \(\angle RTE \).

13) \(\overline{TA} \) is a median of \(\triangle RTE \), \(AE = 3x - 11 \), and \(AR = x + 5 \). Find \(AE \), \(AR \), and \(ER \).

14) \(\overline{EY} \) is a median of \(\triangle RET \), \(RY = 2z - 1 \), and \(TY = 4z - 11 \). Find \(RT \).

15) Find \(x \) and the measure of \(\angle PSR \), if \(\overline{PS} \) is a median.

16) Find \(x \), \(CD \), and \(DB \), if \(\overline{AD} \) is an altitude of \(\triangle ABC \).

17) \(\triangle WHA \), if \(\overline{WP} \) is a median and an angle bisector, \(AP = 3y + 11 \), \(PH = 7y - 5 \), \(m\angle HWP = x + 12 \), \(m\angle PAW = 3x - 2 \), and \(m\angle HWA = 4x - 16 \), find \(x \) and \(y \). Is \(\overline{WP} \) also an altitude, explain?